Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Top. Stereochem. 9, 271-383.
Fieser, L. F. \& Fieser, M. (1967). Steroids, pp. 460-465. New York: Reinhold.
Garcia, J. G., Fronczek, F. R. \& McLaughlin, M. L. (1991). Acta Cryst. C47, 1989-1991.
Ghosh, M., Basak, A. K., Mazumdar, S. K. \& Sheldrick, B. (1991). Acta Cryst. C47, 577-580.

March, J. (1977). Advanced Organic Chemistry: Reactions, Mechanisms and Structure, pp. 29-41. Tokyo: McGraw-Hill Kogakusha.
Petrović, J. A., Pejanović, V. M., Miljković, D. A. \& Hranisavljević, J. T. (1990). Steroids, 55, 276-278.
Pniewska, B. \& Anulewicz, R. (1991). Acta Cryst. C47, 1098-1099.
Prince, F., Fronczek, F. R. \& Gandour, R. D. (1991). Acta Cryst. C47, 2220-2222.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stanković, S., Petrović, J., Miljković, D., Pejanović, V., Kovačević, R., Stefanović, A. \& Bruvo, M. (1992). Acta Cryst. C48, 1248-1252.
Vicković, I. (1988). CSU. Crystal structure utility program. Univ. of Zagreb, Yugoslavia.

Acta Cryst. (1992). C48, 2085-2088

Structures of Bis(dialkylthiophosphoryl)
 Disulfides, $\left[R_{2} \mathbf{P}(S)\right]_{2} \mathrm{~S}_{2}, R=\mathrm{Me},{ }^{i} \mathrm{Pr}$, and the Question of $\mathrm{P}-\mathrm{S} \boldsymbol{\pi}$ Bonding

Anthony C. Gallacher and A. Alan Pinkerton
Department of Chemistry, University of Toledo, Toledo, OH 43606, USA

(Received 28 April 1992; accepted 3 August 1992)

Abstract

The structures of two bis(dialkylthiophosphoryl) disulfides (alkyl = methyl, isopropyl) have been determined. The torsion angles about the disulfide bonds are similar but the geometry with respect to the $\mathrm{P}-\mathrm{S}$ single bonds is different, the methyl compound tending to be trans planar and the isopropyl analog cis planar. The cisoid geometry is associated with larger $\mathrm{S}-\mathrm{P}-\mathrm{S}$ valence angles. The drive to planarity is interpreted as a π contribution to the $\mathrm{P}-\mathrm{S}$ single bond.

Comment

It was reported recently (Buranda, Gallacher \& Pinkerton, 1991) that, although the torsion angle about the S-S bond in organic disulfides tends to be close to 90° with a significant energy maximum at 0 and 180°, substitution of the organic moieties by thiophosphoryl groups gives rise to a wide variety of torsion angles (values ranging from
93.6 to 180.0°). In previous literature reports on the structures of similar disulfides, $\left[R_{2} \mathrm{P}(\mathrm{S})\right]_{2} \mathrm{~S}_{2}$, the $\mathrm{S}-\mathrm{P}-\mathrm{S}-\mathrm{S}$ torsion angles were all close to 180° (transoid geometry) and no unusual effects on the geometry at the P atom were noted (Lawton, 1970; Tkachev, Atovmyan \& Shchepinov, 1976; Yadav, Bohra, Mehrotra, Rai \& Srivastava, 1983). However, when the substituents at the P atom were cyclohexyl groups, a cisoid geometry (S-P-S-S torsion angle $\rightarrow 0^{\circ}$) was observed for one form, and both cisoid and transoid geometries for another (Buranda, Gallacher \& Pinkerton, 1991). Thus, in the cisoid and transoid forms, the PS_{3} unit has a tendency to planarity. The extremely small S-P-S-S torsion angle [20.6(1)-24.7(1) ${ }^{\circ}$] in the cisoid form of the cyclohexyl compound leads to an opening of the $\mathrm{S}-\mathrm{P}-\mathrm{S}$ valence angle by about 10° with respect to the transoid geometry. This opening of the valence angle is evidence for an important $S-S$ steric interaction as the molecule moves towards planarity. It was suggested that the driving force towards planarity (cis or trans) is a π interaction between filled p (or π) orbitals on S and empty d orbitals on P . As the only observation of cisoid geometry is for the bulky cyclohexyl substituent, we have determined the structures of two other disulfides with smaller alkyl substituents [methyl (I) and isopropyl (II)].

(I)

(II)

Despite the similarity between the alkyl substituents, these two disufides fall at the two extremes of the behavior described above. The torsion angles about the disulfide bond are almost identical [(I) 113.6(1), (II) $\left.113.47(3)^{\circ}\right]$. However, the thiophosphoryl moiety is transoid in the methyl compound [S-P-S-S 167.9(1), $\left.171.2(1)^{\circ}\right]$ but cisoid in the isopropyl analog [S-P-SS 17.17(5), 16.35(5) ${ }^{\circ}$]. This difference in conformation has an important effect on the geometry at the P atom. As noted above, there is a large difference between the S -$\mathrm{P}-\mathrm{S}$ valence angles in the transoid methyl compound [103.6(1), 103.8(1) ${ }^{\circ}$] compared with those in the cisoid isopropyl analog $\left[115.96(4), 115.08(4)^{\circ}\right]$. The opening of the valence angle is associated with a lengthening of the $\mathrm{P}-\mathrm{S}$ bond [(I) 2.100 (2), 2.095(3) \AA; (II) $2.1562(8)$, $2.1584(8) \AA$] and a concomitant shortening of the disulfide bond [(I) 2.074(3), (II) 2.0247 (8) \AA]. We note that an analogous trisulfide $\left[\mathrm{Et}_{2} \mathrm{P}(\mathrm{S})\right]_{2} \mathrm{~S}_{3}$ also has a planar transoid geometry for both PS_{3} moieties (Gallacher \& Pinkerton, 1992).

Although it is still not clear why molecules of this type should exist with a cisoid or transoid geometry, especially
as one modification of the cyclohexyl compound has both conformations in the same molecule, there is clearly a drive to planarity of the PS_{3} unit which we ascribe to the π interaction described previously (Buranda, Gallacher \& Pinkerton, 1991).

Fig. 1. Bis(dimethylthiophosphoryl) disulfide (I) showing transoid geometry. Probability ellipsoids are drawn at 50% and H atoms placed at ideal positions.

Fig. 2. Bis[di(isopropyl)thiophosphoryl] disulfide (II) showing cisoid geometry. Probability ellipsoids are drawn at 50% and H atoms placed at ideal positions.

Experimental

Compound (I)
Crystal data
$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{P}_{2} \mathrm{~S}_{4}$
$M_{r}=250.34$
Orthorhombic
Pna_{1}
$a=22.046$ (6) \AA
$b=6.226$ (1) \AA
$c=8.480(3) \AA$
$V=1164.0(9) \AA^{3}$
$Z=4$
$D_{x}=1.43 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-14^{\circ}$
$\mu=1.000 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Irregular shape
$0.40 \times 0.36 \times 0.29 \mathrm{~mm}$
Colorless

Data collection
Enraf-Nonius CAD-4 diffractometer $\theta / 2 \theta$ scans
Absorption correction: refined empirical (Walker \& Stuart, 1983)
$T_{\text {min }}=0.7900, T_{\text {max }}=$ 1.1640

1246 measured reflections 1246 independent reflections

Refinement
Refinement on F
Final $R=0.042$
$w R=0.041$
$S=1.265$
750 reflections
90 parameters
H atoms riding
$w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$
$+0.0004 F_{o}^{4}$]

750 observed reflections

$$
[I>3.0 \sigma(I)]
$$

$\theta_{\text {max }}=24.98^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 26$
$l=0 \rightarrow 7$
3 standard reflections frequency: 50 min intensity variation: 2.54%
$(\Delta / \sigma)_{\max }=0.010$
$\Delta \rho_{\max }=0.3604 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.3156 \mathrm{e}^{-3}$

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for (I)

The choice of enantiomorph is random as both refine equally well and the bulk sample is racemic. $U_{\text {eq }}=\frac{1}{3} \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} a_{i} \cdot \mathbf{a}_{j}$.

	x	y	z	$U_{\text {eq }}$
S1	$0.55027(9)$	$0.2053(4)$	$0.5087(3)$	$0.058(1)$
S2	$0.42810(9)$	$0.3594(3)$	0.6720	$0.045(1)$
S3	$0.33628(9)$	$0.3954(3)$	$0.6264(3)$	$0.048(1)$
S4	$0.2063(1)$	$0.3034(4)$	$0.7724(3)$	$0.066(2)$
P1	$0.46323(9)$	$0.1781(3)$	$0.4843(3)$	$0.039(1)$
P2	$0.29064(9)$	$0.2248(3)$	$0.8029(3)$	$0.042(1)$
C1	$0.4315(4)$	$0.289(1)$	$0.309(1)$	$0.066(6)$
C2	$0.4351(3)$	$-0.088(1)$	$0.499(1)$	$0.055(5)$
C3	$0.3058(4)$	$-0.053(1)$	$0.780(1)$	$0.059(6)$
C4	$0.3246(4)$	$0.298(1)$	$0.9863(9)$	$0.053(5)$

Table 2. Geometric parameters ($\AA,{ }^{\circ}$) for (I)

S1-P1	1.938 (3)	P1-C1	1.783 (8)
S2-S3	2.073 (3)	P1-C2	1.772 (8)
S2-P1	2.099 (3)	P2-C3	1.773 (8)
S3-P2	2.094 (3)	P2-C4	1.785 (8)
S4-P2	1.941 (3)		
S3-S2-P1	106.1 (1)	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 2$	106.4 (4)
S2-S3-P2	106.3 (1)	S3-P2-S4	103.7 (1)
$\mathrm{S} 1-\mathrm{P} 1-\mathrm{S} 2$	103.7 (1)	S3-P2-C3	109.1 (3)
S1-P1-C1	116.4 (3)	S3-P2-C4	107.0 (3)
S1-P1-C2	114.9 (3)	S4-P2-C3	114.3 (3)
S2-P1-C1	106.3 (3)	S4-P2-C4	117.0 (3)
S2-P1-C2	108.7 (3)	C3-P2-C4	105.4 (4)
P1-S2-S3-P2	113.6 (1)	S2-S3-P2-S4	171.2 (1)
S3-S2-P1-S1	167.7 (1)		
Compound (II)			
Crystal data			
$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{P}_{2} \mathrm{~S}_{4}$		$D_{x}=1.26 \mathrm{M}$	
$M_{r}=362.56$		Mo $K \alpha$ radiat	
Triclinic		$\lambda=0.71073$	

$P \overline{1}$
$a=7.616(1) \AA \AA$
$b=11.378(1) \AA$
$c=12.403(2) \AA$
$\alpha=68.33(1)^{\circ}$
$\beta=72.61(1)^{\circ}$
$\gamma=85.53(1)^{\circ}$
$V=952.4(2) \AA^{3}$
$Z=2$

Data collection
Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: empirical
$T_{\min }=0.9021, T_{\max }=$ 0.9995

7482 measured reflections
3743 independent reflections
Cell parameters from 25
\quad reflections
$\theta=9-16^{\circ}$
$\mu=0.631 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Elongated plate
$0.35 \times 0.20 \times 0.10 \mathrm{~mm}$
Colorless

Colorless

2466 observed reflections
[$I>3.0 \sigma(I)]$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=25.97^{\circ}$
$h=-9 \rightarrow 9$
$k=-14 \rightarrow 14$
$l=-15 \rightarrow 15$
3 standard reflections frequency: 50 min intensity variation: 3.62\%

Refinement

Refinement on F
Final $R=0.025$
$w R=0.032$
$S=1.000$
2466 reflections
163 parameters
H atoms riding
$w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$
$\left.+0.0009 F_{o}^{4}\right]$

Table 3. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for (II)

$U_{\mathrm{eq}}=$				$\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$.
	\boldsymbol{x}	y	z	U_{eq}
S1	$-0.46676(9)$	$-0.05534(5)$	$-0.20811(5)$	$0.0516(3)$
S2	$-0.20962(8)$	$-0.32374(5)$	$-0.14043(4)$	$0.0412(2)$
S3	$-0.05433(7)$	$-0.20617(5)$	$-0.30360(4)$	$0.0434(2)$
S4	$-0.29656(8)$	$-0.40524(5)$	$-0.36624(5)$	$0.0519(3)$
P1	$-0.42945(7)$	$-0.20898(5)$	$-0.08292(4)$	$0.0354(2)$
P2	$-0.08997(7)$	$-0.28590(4)$	$-0.42920(4)$	$0.0351(2)$
C1	$-0.3680(3)$	$-0.1809(2)$	$0.0375(2)$	$0.0485(9)$
C2	$-0.3438(3)$	$-0.3024(2)$	$0.1384(2)$	$0.062(1)$
C3	$-0.1989(3)$	$-0.0923(2)$	$-0.0156(2)$	$0.068(1)$
C4	$-0.6227(3)$	$-0.3250(2)$	$-0.0109(2)$	$0.044(1)$
C5	$-0.7779(3)$	$-0.2851(2)$	$0.0772(2)$	$0.059(1)$
C6	$-0.6895(3)$	$-0.3460(2)$	$-0.1071(2)$	$0.070(1)$
C7	$0.1325(3)$	$-0.3547(2)$	$-0.4733(2)$	$0.0440(9)$
C8	$0.2950(3)$	$-0.2592(2)$	$-0.5308(2)$	$0.059(1)$
C9	$0.1642(3)$	$-0.4657(2)$	$-0.3665(2)$	$0.063(1)$
C10	$-0.1027(3)$	$-0.1420(2)$	$-0.5567(2)$	$0.0410(9)$
C11	$-0.2816(3)$	$-0.0755(2)$	$-0.5260(2)$	$0.059(1)$
C12	$-0.0801(4)$	$-0.1729(2)$	$-0.6703(2)$	$0.067(1)$

Table 4. Geometric parameters ($\AA{ }^{\circ},^{\circ}$) for (II)

S1-P1	$1.9312(8)$	C1-C2	$1.527(3)$
S2-S3	$2.0249(8)$	C1-C3	$1.520(3)$
S2-P1	$2.1563(8)$	C4-C5	$1.520(3)$
S3-P2	$2.1582(7)$	C4-C6	$1.527(3)$
S4-P2	$1.9350(8)$	C7-C8	$1.527(3)$

P1-C1	$1.830(2)$	C7-C9	$1.522(3)$
P1-C4	$1.831(2)$	C10-C11	$1.521(3)$
P2-C7	$1.827(2)$	C10-C12	$1.532(3)$
P2-C10	$1.829(2)$		
S3-S2-P1	$104.45(3)$	C7-P2-C10	$107.7(1)$
S2-S3-P2	$103.61(3)$	P1-C1-C2	$113.4(2)$
S1-P1-S2	$115.94(4)$	P1-C1-C3	$110.4(2)$
S1-P1-C1	$113.35(8)$	C2-C1-C3	$111.7(2)$
S1-P1-C4	$115.24(8)$	P1-C4-C5	$111.2(2)$
S2-P1-C1	$10.62(8)$	P1-C4-C6	$110.3(2)$
S2-P1-C4	$100.53(8)$	C5-C4-C6	$111.4(2)$
C1-P1-C4	$107.7(1)$	P2-C7-C8	$113.9(2)$
S3-P2-S4	$115.09(3)$	P2-C7-C9	$111.0(2)$
S3-P2-C7	$103.00(8)$	C8-C7-C9	$110.6(2)$
S3-P2-C10	$100.80(7)$	P2-C10-C11	$111.3(2)$
S4-P2-C7	$113.55(8)$	P2-C10-C12	$110.3(2)$
S4-P2-C10	$115.24(8)$	C11-C10-C12	$111.1(2)$
P1-S2-S3-P2	$-113.48(3)$	S2-S3-P2-S4	$16.36(5)$
S3-S2-P1-S1	$17.19(5)$		

Data collection: CAD-4 (Enraf-Nonius, 1977). Cell refinement: CAD-4. Data reduction: PROCESS MolEN (Fair, 1990). Program(s) used to solve structure: (I) MULTAN (Main et al., 1980), (II) DIRDIF (Beurskens, 1984). Program(s) used to refine structure: LSFM MolEN. Molecular graphics: ORTEP (Johnson, 1976). Software used to prepare material for publication: BTABLE, PTABLE, CIF IN, MolEN.

The title compounds were obtained easily from iodine oxidation of the corresponding anions $R_{2} \mathrm{PS}_{2}^{-}$(Maier, 1965) and crystallized from ethanol.
Backgrounds were obtained from analysis of the scan profile (Blessing, Coppens \& Becker, 1974). For the isopropyl compound, the structure was solved in space group $P 1$, using DIRDIF (Beurskens, 1984) starting with one P atom at the origin, and then transformed into the correct space group.

We thank the College of Arts and Sciences of the University of Toledo for generous support of the X -ray facility.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55393 (37 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. [CIF reference: AB1019]

References

Beurskens, P. T. (1984). DIRDIF. Lecture Notes, International Summer School on Crystallographic Computing, Mülheim a. d. Ruhr, Germany.
Blessing, R. H., Coppens, P. \& Becker, P. (1974). J. Appl. Cryst. 7, 488492.

Buranda, T., Gallacher, A. C. \& Pinkerton, A. A. (1991). Acta Cryst. C47, 1414-1418.
Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An interactive intelligent system for crystal structure analysis. Enraf-Nonius, Delft, The Netherlands.
Gallacher, A. C. \& Pinkerton, A. A. (1992). Acta Cryst. C48, 701-703.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lawton, S. L. (1970). Inorg. Chem. 9, 2269-2274.
Maier, L. (1965). Topics in Phosphorus Chemistry, Vol. 2, edited by M. Grayson \& E. J. Griffith, pp. 43-131. New York: Interscience.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Tkachev, V. V., Atovmyan, L. O. \& Shchepinov, S. A. (1976). Zh. Strukt. Khim. 17, 945-947.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Yadav, J. S., Bohra, R., Mehrotra, R. K., Rai, A. K. \& Srivastava, G. (1983). Acta Cryst. C45, 308-311.

Acta Cryst. (1992). C48, 2088-2090
Ethyl (2R,3R,SR)-3-(Ethoxycarbonyloxy)-2-[1-(p-tolylsulfinyl)cyclopropyl]-1-pyrrolidinecarboxylate

Paul D. Robinson

Department of Geology, Southern Illinois University, Carbondale, IL 62901, USA

Duy H. Hua, \dagger Xiangyue Wu, Shou Wu Miao and Muriel Meled

Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
(Received 14 April 1992; accepted 29 July 1992)

Abstract

The title compound, derived in four steps beginning with the cyclopropanation reaction of the anion of the α sulfinyl ketimine ($4 R, \mathrm{SS}$)-4-(tert-butyldimethylsilyloxy)-3,4-dihydro-5-[(p-tolylsulfinyl)methyl]-2H-pyrrole with 2-chloroethyl trifluoromethanesulfonate, contains a shorter than expected bond $[\mathrm{C}(7)-\mathrm{C}(8) 1.48$ (1) \AA] and a larger than expected angle $\left[\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{C}(2) 123.2\right.$ (6) $\left.{ }^{\circ}\right]$ in the cyclopropane framework.

Comment

The title compound (I) was synthesized using α-sulfinyl ketimine chemistry (Hua, Bharathi, Panangadan \& Tsujimoto, 1991) as part of our investigations into the asymmetric total synthesis of the anti-tumor agent indicine N oxide (Kovach, Ames, Powis, Moertel, Hahn \& Cregan, 1979). When (4R,SS)-4-(tert-butyldimethylsilyloxy)-3,4-dihydro-5-[(p-tolylsulfinyl)methyl]-2 H -pyrrole (II) was treated with 1.3 equivalents of lithium diisopropylamide (LDA) in THF at 195 K followed by 2-chloroethyl trifluoromethanesulfonate, 5 -cyclopropyldihydropyrrole (III)

[^0]was isolated unexpectedly [yield 55%, based on 26% recovery of (II)]. Subsequent stereoselective reduction of (III) with zinc cyanoborohydride followed by desilylation with tetra- n-butylammonium fluoride and then ethoxycarbonylation with 3 equivalents of LDA and 2.5 equivalents of ethyl cyanoformate gave the title compound (I); $[\alpha]_{\mathrm{D}}^{22^{\circ} \mathrm{C}}$ $=+34.4^{\circ}\left(c 0.5, \mathrm{CHCl}_{3}\right)$, m.p. 369-374 K (recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane).

The $\mathrm{C}(7)-\mathrm{C}(8)$ bond in the cyclopropyl ring of (I) is shorter $[1.48(1) \AA]$ than both the normal distance for cyclopropane (1.51 A) (Vollhardt, 1987) and the C(6)$\mathrm{C}(7)$ and $\mathrm{C}(6)-\mathrm{C}(8)$ bonds. In addition, the bond angle $\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{C}(2)\left[123.2(6)^{\circ}\right]$ is substantially larger than the corresponding angle $\left(115^{\circ}\right)$ in cyclopropane.

Fig. 1. Molecular configuration and atom-numbering scheme with thermal ellipsoids at the 30% probability level. H atoms are shown as unlabeled circles of arbitrary radius.

Fig. 2. Stereoscopic illustration of the molecular packing. The origin is at the lower-right-front, a is into the plane of the paper, b is vertical, and c is horizontal.

[^0]: \dagger Fellow of the Alfred P. Sloan Foundation, 1989-1993.

